2005 Vol. 7, No. 20 4415-4418

Di-*tert*-butylsilylene-Directed α -Selective Synthesis of 4-Methylumbelliferyl **T-Antigen**

Akihiro Imamura,† Hiromune Ando,*,‡ Hideharu Ishida,† and Makoto Kiso*,†

Department of Applied Bioorganic Chemistry, Gifu University and CREST, Japan Science and Technology Corporation (JST), 1-1 Yanagido, Gifu 501-1193, Japan, and Life Science Research Center, Gifu University, Gifu 501-1193, Japan

hando@cc.gifu-u.ac.jp; kiso@cc.gifu-u.ac.jp

Received July 7, 2005

ABSTRACT

We have succeeded in the facile synthesis of 4-methylumbelliferyl T-antigen as a substrate for endo-α-N-acetylgalactosaminidase by exploiting the combination of the di-tert-butylsilylene effect and the Mitsunobu reaction.

endo-α-N-Acetylgalactosaminidase is a glycosidase of widespread occurrence in the bacteria kingdom.¹ The enzyme hydrolyzes the O-glycosidic α-linkage between T-antigen $[\beta$ -D-Gal- $(1\rightarrow 3)$ - α -D-GalNAc] and a serine or threonine residue in mucin-type glycoprotein.² To elucidate the substrate specificity of this enzyme, or screen the new species from other living organisms, sensitive synthetic fluorogenic T-antigen probes are intensively desired.

In this paper, we report the synthesis of 4-methylumbelliferyl (4-MU) T-antigen 1 (Figure 1) as a sensitive fluorogenic probe, featuring a di-tert-butylsilylene (DTBS)-directed α-selective Mitsunobu reaction.

4-MU glycosides have been popular type of fluorogenic probe for hydrolases because of the potent fluorometric property of the phenolic counterpart liberated by enzymatic hydrolysis.³ However, the 4-MU glycoside synthesis is generally difficult.⁴ In particular, the synthesis of α-gly-

(2) (a) Iwase, H.; Hotta, K. Methods Moll. Biol. 1993, 14, 151–159. (b) Bhavanandan, V. P.; Codington, J. F. Carbohydr. Res. 1983, 118, 81-89.

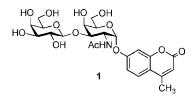


Figure 1. Structure of 4-methylumbelliferyl T-antigen.

cosaminides such as the title compound is extremely arduous in order to circumvent the participatory effects of the N-acetyl group. In their synthesis of 4-MU-α-GalNAc, Lemieux and co-workers utilized 2-azidogalactosyl chloride as a glycosyl donor as it possesses a nonparticipatory group at C2. Unfortunately, its synthesis required many laborious manipulations. Moreover, the glycosyl donor could only be coupled to 4-methylumbelliferone (4-MU-OH) in poor yield (33%).⁵ To solve this synthetic issue, we envisaged using

^{*} To whom correspondence should be addressed.

[†] Department of Applied Bioorganic Chemistry, Gifu University.

Life Science Research Center, Gifu University.
(1) (a) Tanaka, Y.; Takahashi, Y.; Shinose, M.; Omura, S.; I.-Karakasa, I.; Iwase, H.; Hotta, K. J. Ferment. Bioeng. 1998, 85, 381-387. (b) Ashida, H.; Yamamoto, K.; Murata, T.; Usui, T.; Kumagai, H. Arch. Biochem. Biophys. 2000, 373, 394-400.

^{(3) (}a) Beutler, E.; Kuhl, W. J. Biol. Chem. 1972, 247, 7195-7200. (b) Casciola-Rosen, L. A. F.; Hubbard, A. L. J. Biol. Chem. 1991, 266, 4341-

⁽⁴⁾ Courtin-Duchateau, M.-C.; Veyrieres, A. Carbohydr. Res. 1978, 65,

our DTBS-directing α -selective galactosylation⁶ for 4-MU T-antigen synthesis.

Taking the advantage of the compatibility of our α -selective galactosylation with acyl functionality on C-2 amino groups, we designed the *N*-2,2,2-trichloroethoxycarbonyl (Troc)-protected disaccharide **7** as a DTBS glycosyl donor. Treatment of the readily accessible 2-*N*-Troc galactothioglycoside **2**⁷ with DTBS(OTf)₂ in pyridine⁸ gave 4,6-silylated **3** in 93% yield, which was then orthogonally glycosylated with the 1,2,3,4,6-penta-*O*-acetyl- β -D-galactopyranose **4** catalyzed by trimethylsilyl trifluoromethanesulfonate⁹ to afford disaccharide **5** in 67% yield. The hemiacetalization of **5** with NBS in aqueous acetone¹⁰ produced **6**. Finally, the hemiacetal **6** was converted into the corresponding chloride **7** by the action of Vilsmeier's reagent¹¹ (Scheme 1).

Scheme 1. Preparation of Gal $\beta(1\rightarrow 3)$ GalN Disaccharide

HO OH NHTroc DTBS(OTf)₂, Pyridine 93% AcO OAc OAc AcO OAc AcO OAc TrochNR₂

NBS, 91% 5:
$$R_1 = SPh$$
, $R_2 = H$ (CICO)₂, DMF, 98% 7: $R_1 = H$, $R_2 = OH$

With the glycosyl chloride 7 in hand, we then subjected it to a DTBS-directing α -glycosidation with 4-methylumbelliferone. Initially, we attempted reaction of the α -chloride 7 with 4-methylumbelliferone 8 in the presence of the silver triflate— γ -collidine complex. This reaction provided the α -glycoside 9 exclusively in 24% yield together with the hemiacetal 6 as the main byproduct (Scheme 2). However, the yield could not be elevated any further.

Accordingly, we next investigated the utility of the Mitsunobu reaction in this capacity. ¹² Thus, the hemiacetal

Scheme 2. Condensation of 7 and 4-Methylumbelliferone 8

6 was reacted with **8** in the presence of various combinations of trialkyl phosphines (TPP, ¹² TBP, ^{13,15} DPPE¹⁴) and azocompounds (DEAD, ¹² ADDP, ¹³ TMAD, ¹⁵ DIAD ^{12,14}) as summarized in Table 1. Surprisingly, the anomeric config-

Table 1. 4-Methylumbelliferylation by Mitsunobu Reaction

	1 1. /	MILOIT			or 111-
entry	phosphine/azo compd ^b	MU-OH (equiv)	solvent	T (°C)	% yield ^c (α/β)
1^d	TPP/DEAD	3.0	THF	80	47:5
2^e	TBP/ADDP	3.0	THF	80	20:-
3^f	TBP/TMAD	3.0	THF	80	8:-
4^g	DPPE/DIAD	3.0	THF	80	no reaction
5	TPP/DEAD	3.0	toluene	130	74:8
6	TBP/ADDP	3.0	toluene	130	62:15
7	TPP/DEAD	8.0	toluene	130	80:9

^a Every reaction was conducted under reflux condition. ^b TPP, triphenylphosphine, TBP, tributylphosphine, DPPE, 1,2-bis(diphenylphosphino)-ethane, DEAD, diethyl azodicarboxylate, ADDP, 1,1'-(azodicarbonyl)dipiperidine, TMAD, 1,1'-azobis(N,N'-dimethylformamide), DIAD, diisopropyl azodicarboxylate. ^c Isolated yield. ^d See ref 12. ^e See ref 13. ^f See ref 15. ^g See ref 14.

uration of **6** was mostly retained; the α -glycoside **9** predominating in all these reactions. Interestingly, the yield of **9** increased when the reaction was performed at higher

4416 Org. Lett., Vol. 7, No. 20, 2005

⁽⁵⁾ Szweda, R.; Spohr, U.; Lemieux, R. U.; Schindler, D.; Bishop, D. F.; Desnick, R. J. *Can. J. Chem.* **1989**, *67*, 1388–1391.

⁽⁶⁾ Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso, M. *Tetrahedron Lett.* **2003**, *44*, 6725–6728.

⁽⁷⁾ Compound **2** was derived from galactosamine hydrochloride through four-step manipulation (65% overall) according to the method of 2-*N*-Troc glucothioglycoside: Yan, F.; Mehta, S.; Eichler, E.; Wakarchuk, W. W.; Gilbert, M.; Schur, M. J.; Whitfield, D. M. *J. Org. Chem.* **2003**, *68*, 2426–2421

⁽⁸⁾ Furusawa, K.; Ueno, K.; Katsura, T. Chem. Lett. 1990, 97-100.

^{(9) (}a) Ogawa, T.; Beppu, K.; Nakabayashi, S. Carbohydr. Res. 1981, 93. C6-C9. (b) Paulsen, H.; Paal, M. Carbohydr. Res. 1984, 135, 53-69.

⁽¹⁰⁾ Kaesbeck, L.; Kessler, H. Liebigs. Ann. Chem. 1997, 169–173.

^{(11) (}a) Newman, M. S.; Sujeeth, P. K. J. Org. Chem. 1978, 43, 3, 4367–4369.
(b) Iversen, T.; Bundle, D. R. Carbohydr. Res. 1982, 103, 29–40.
(12) Mitsunobu, O. Synthesis 1981, 1–28.

⁽¹³⁾ Tsunoda, T.; Yamamiya, Y.; Ito, S. Tetrahedron Lett. 1993, 34, 1639–1642.

⁽¹⁴⁾ O'Neil, I. A.; Thompson, S.; Murray, C. L.; Kalindjian, S. B. Tetrahedron Lett. 1998, 39, 7787–7790.

^{(15) (}a) Tsunoda, T.; Otsuka, J.; Yamamiya, Y.; Ito, S. *Chem. Lett.* **1994**, 539–542. (b) Tsunoda, T.; Yamamiya, Y.; Kawamura, Y.; Ito, S. *Tetrahedron Lett.* **1995**, *36*, 2529–2530.

temperature (entries 5 and 6). Additionally, the use of excess 4-MU-OH (8.0 equiv) led to the optimum product yield (80%) (entry 7).

In contrast, in entries 1 and 2, the trichloroethoxyoxazole ${\bf 10}$ was observed as a major byproduct. Furthermore, we observed the transitory formation of ${\bf 10}$ during all our reactions according to TLC monitoring. This result implied that the oxazole ${\bf 10}$ is a reaction intermediate; in fact, the isolated oxazole ${\bf 10}$ reacted with 4-MU-OH in toluene under reflux to afford α -glycoside ${\bf 9}$ in 85% yield (Scheme 3).

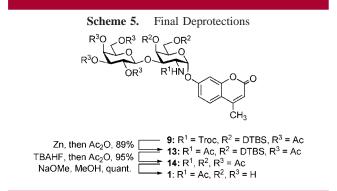
Scheme 3. Coupling of **10** and **8** in the Absence of Activators

Significantly, we have shown that this reaction can produce other α -aryl glycosides **11** and **12** in moderate yields (Table 2). Taking into consideration these results, we hypothesize that the coupling reactions proceed as follows: (i) initial formation of the oxazole intermediate results from triphen-

Table 2. Various Arylations by Mitsunobu Reaction^a

entry	aryl alcohol	product	% yield (α/β)
1	MPOH	11	56:-
2	PNPOH	12	41:17

^a All reaction conditions are the same as entry 5 in Table 1.


ylphosphine oxide elimination, (ii) oxocarbenium ion formation then occurs, (iii) "through-space" electron-donation 16 from axially oriented C4 or C6 hydroxyl places the 'Bu moiety closer to the anomeric carbon, and (iv) attack of 4-MU-OH is then restricted to the α -face of anomeric center due to steric hampering by the DTBS group (Scheme 4).

Finally, as depicted in Scheme 5, 4-MU glycoside **9** was transformed into **1**. Thus, deprotection of Troc group by the action of Zn and subsequent acetylation provided acetamide **13** in 89% yield. Removal of 4,6-*O*-DTBS group by TBAHF¹⁷ and sequential acetylation yielded fully acetylated 4-MU T-antigen **14** in 95% yield, which was subjected to de-*O*-acetylation¹⁸ to afford free 4-methylumbelliferyl T-antigen **1**.

In conclusion, we have found a new method for forming α -4-MU galactosaminide based upon the DTBS effect and the Mitsunobu reaction. The synthesized 4-MU T-antigen will serve as a powerful probe for enzymatic studies, e.g., seeking the unknown *endo-\alpha-N*-acetylgalactosaminidase.

Scheme 4. Expected Reaction Mechanism on Aryl Glycosylation

Org. Lett., Vol. 7, No. 20, 2005

Now we are also undertaking the synthesis of other tumorassociated glycan antigen probes having 4-MU.

Acknowledgment. This work was partly supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (Grant-in-Aid for Scientific Research to M. Kiso, No. 17101007) and CREST of JST (Japan Science and Technology Corporation.). We thank Ms. Kiyoko Ito for technical assistance.

Supporting Information Available: Full experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL051592Z

4418 Org. Lett., Vol. 7, No. 20, 2005

^{(16) (}a) Miljkovic, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L. *J. Org. Chem.* **1997**, *62*, 7597–7604. (b) Bols, M.; Liang, X.; Jensen, H. H. J. Org. Chem. 2002, 67, 8970-8974.

⁽¹⁷⁾ Furusawa, K. Chem. Lett. 1989, 509-510.
(18) Rothermel, J.; Faillard, H. Carbohydr. Res. 1990, 196, 29-40.